Azeotropes (constant boiling mixture)- and types 
The  liquid mixture, having the Same composition in liquid and vapour phase & boil at a constant temperature, is called azeotrope. 
Differentiate between minimum & maximum boiling azeotropes 
| 
S. No.  | 
minimum boiling azeotropes  | 
Maximum boiling azeotropes  | 
| 
1  | 
Azeotropes whose boiling point is less than either of two components present in the liquid mixture.  | 
Azeotropes whose boiling point is more than either of two components present in the liquid mixture.  | 
| 
2  | 
The non-ideal solution which show a large positive deviation from Raoult’s law form minimum boiling azeotropes at specific composition  | 
The non-ideal solution which show a large negative deviation from Raoult’s law form minimum boiling azeotropes at specific composition  | 
| 
3  | 
Example - solution showing positive deviation   
Liquid mixture of 95 % ethanol + 5 % water  | 
Example - solution showing negative deviation  
Liquid mixture of 68% Nitric acid +32%water  | 
Azeotropic matures cannot be separated into their constituents by fractional distillation. 
Colligative properties - 
  Those properties of Ideal solutions which defend only on the no. of particles of the solute (molecules or ions) dissolved in a definite amount of the solvent & do not depend on the nature of solute are called colligative properties. 
There are as follow- 
1). Relative lowering vapour pressure 
2) Elevation of boiling points 
3) Depression of freezing point  
4) osmotic pressure 
1). Relative lowering vapour pressure 
We know that when non-volatile solute is dissolved in a solvent, the vapour pressure of the solution becomes lower than that of the pure solvent. The decrease in vapour pressure of solution is called lowering of vapour pressure. Expressed by  
∆P = P10 - P1   …........................(1)  
 By applying Raoult’s law      
P1   = P10 x1    .......(2) 
∆P = P10 - P10 x1                
∆P = P10 - P10 (1-x2)       since x1=1-x2 
or ∆P = P10 - P10 +P10 x2                           
 or     ∆P = P10 x2    ….............(3) 
 So, ∆P/ P10   = (P10 - P1 )/ P10     = x2                       ,….........................  …......(4) 
 The ratio of    ∆P/ P10   = (P10 - P1 )/ P10    is called relative lowering vapour pressure. 
 Equation (4) may be written as     
∆P/ P10   =(P10 - P1 )/ P10    
                = x2 = n2 /( n1 + n2 )
For dilute solution    
(P10 - P1 )/ P10   = x2 = n2 / n1              ( since n2 is lesser than n1) 


No comments:
Post a Comment
If you have any doubts, Please let me know.